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Interpolating Functions on Lines in 3-Space

Martin Peternell and Helmut Pottmann

Abstract. Given straight lines Li, i = 1, .. ,N, in Euclidean 3-space
with associated function values fA, we study the interpolation problem of
constructing a smooth real valued function F which interpolates values fi
at given data lines Li. The function F shall be defined on the entire set
of lines or at least on lines contained in a domain of interest in 3-space.

§1. Introduction

The problem of constructing an interpolating function F for data lines Li and
corresponding function values fi is a scattered data interpolation problem in
the set of lines £ in Euclidean 3-space E 3 .

A variety of solutions of scattered data interpolation problems for data
points Xi E U with U = R' or U c R' are known, see [3]. Extensions to
spheres and other surfaces in R 3 are described in [2] and references therein.

Scattered data interpolation on lines is quite different, since the set of lines
£ is not a Euclidean space. It is a result of classical geometry that the set of
lines L of projective extension p 3 of Euclidean 3-space E 3 is a 4-dimensional
quadratic variety M4 in projective p 5. Thus, the general formulation of the
problem is as follows: Construct a function F : M2g -- l interpolating val-
ues fi to corresponding data lines Li. For practical purposes it is sufficient
to construct (or represent) functions on subsets of M4 which correspond to
domains of interest in E 3 , containing all data lines.

The solution presented here will be the following. We restrict to specific
four-dimensional subsets t O of M4. These subsets possess parametrizations
R4 - LO with the property that distances between lines in LO are induced
by special positive quadratic forms in l4t. This fact allows us to apply well-
known methods in R4 to solve interpolation (or also approximation) problems.

Applications include light field rendering in computer graphics [4]. Con-
sidering motion planning in robotics, the method applies to represent a dis-
tance function of robot arms (lines) to obstacles. The first motivation for
studying functions on lines came from five axis milling. There, the question
occurs of how to represent axis positions (lines) of the cutting tool.

Curve and Surface Fitting: Saint-Malo 1999 351
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 351-358.
Copyright 02000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1357-3.
All rights of reproduction in any form reserved.



352 M. Peternell and H. Pottmann

§2. Lines in Space

An oriented line L in Euclidean 3-space E 3 is determined by a point p and a
unit direction vector 1 (11111 = 1). Together with the moment vector

I =px, (1)

we obtain a representation of L by a sixtuple

L = (1;l) = (11,12,13; 14,15, 16). (2)

These li's are called normalized Plucker coordinates of L. By (1), these coor-
dinates are not independent, but satisfy the Plucker relation

I. l = 1114 + 1215 + 1316 = 0. (3)

Substituting 1 by -1 leads to coordinate vector -L which defines the same line
but with opposite orientation. To get more information about the structure
of lines in space, it is necessary to study the set of lines L in the projective
extension p 3 of E 3 .

E 3 is extended to p 3 by adding points and lines at infinity. Using the
analytical model R 4 , points in p 3 are one dimensional subspaces of 1R4 . Thus,
we will use the following notation for points in p 3,

(X0 , X1, X2, X3)R := (AXO, • • • , AX3 ), A E ]R.

Let w : xo = 0 be the plane at infinity. We write briefly (xo, x)R, with x E R 3

for points in p 3. The transition from homogeneous to Cartesian coordinates
is given by

X0 X0

which is obviously only possible for points not at infinity.
A line L in p 3 usually is spanned by two points (p0, p)lR and (qo, q)R.

Homogeneous Plicker coordinates are obtained by

L = (11,...,16 ) = (poq- q0p, p x q). (4)

If we substitute (Po,p) by A(po,p), we get AL such that the li's are only
determined up to a scalar multiple. This proves homogeneity of L.

If L is not in w, the relation to definition (2) is obtained as follows.
Let (po, p)IR be a proper point on L such that we can switch to Cartesian
coordinates p by letting P0 = 1. Further, let (qo,q)R be the intersection
point w fn L which implies qo = 0. Inserting this into (4) gives (2) up to a
normalization of the direction vector q = 1 of the line L.

If L is in w, its Plicker coordinates are (o, a)R with o = (0, 0, 0) and
some not vanishing vector a. We can interprete L as the line at infinity of a
pencil of parallel planes a x = c, with c E R. All these planes possess a as
normal vector.
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Fig. 1. Stereographic projection of a hyperboloid Q.

Since L and AL define the same line in P3 , homogeneous Plicker coordi-
nates (4) define points LR in P5 . But only those 6-tuples (Xl,..., x6)IR are
Plicker coordinates of a line X in p 3, which satisfy

X1X4 + X2X5 + X3X6 = 0.

This quadratic variety is called the Klein quadric M4, where upper and lower
indices denote dimension and degree of this variety. The maximal dimension
of its subspaces is 2. It is a point model of the set of lines t of p 3. The
bijection

M4

from lines L C p 3 to points LR of M24 is called Klein mapping.
The image points (o, a)R of lines at infinity lie in the plane E x =

X2 = X3 = 0 which is entirely contained in M4. All lines passing through
the origin 0 = (1, 0, 0, 0)R have Pliicker coordinates L = (1, o). This can be
checked by letting p = (0, 0, 0) in formula (1). The corresponding image points
in P5 lie in the plane E, : X4 = X5 = X6 = 0. In general, all lines through an
arbitrary point in p 3 possess y-images which lie in a 2-dimensional subspace
of M4. The same holds for lines contained in an arbitrary plane in p 3. Thus,
M4 contains two 3-parametric families of 2-dimensional subspaces.

We emphasize that £ and Z are not Euclidean, affine or projective spaces.

Local coordinates of lines

We have seen that r is isomorphic to M4 - E,,, where E& consists of
image points of all lines at infinity. Let T be the tangent hyperplane of M2
at a point Z and let r = M24 n T. It is known that T is the -y-image of all lines
intersecting the line L = Z-y 1.

Lemma 1. M4 - T = A 4 is an affine space.

Proof. This lemma is a result of classical geometry, and is proved by stere-
ographic projection. Let Q be a regular quadric in P'. Let Z be a point in
Q and T its tangent hyperplane, see Figure 1. Further, consider E to be
a hyperplane in P', not incident with Z. The intersection r = Q n T is a
quadratic cone with vertex Z. The intersection e = E n T is a hyperplane
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X t)

Fig. 2. Local coordinates, distance function.

in E. This says that E - e is an affine space. The stereographic projection
ao: Q - T -+ E - e with center Z is bijective and maps points P E Q - T to
points P' in affine space E - e. 0

Figure 1 shows a low dimensional example. Q is a hyperboloid, and r- is
a pair of lines. Planes E and T are parallel such that e is at infinity.

We come back to line geometry and the Klein quadric M4. Let Z =
(0, 0, 0, 0, 0, 1)R be the center of a stereographic projection. It is the y-image
of the line at infinity which is determined by horizontal planes z --const. with
normal vector (0,0, 1). The tangent hyperplane T at Z with respect to M24
is given by the equation x3 = 0. The exceptional set T = M24 n T consists
of -y-images (11,12,0; ... )IR of all horizontal lines. Lemma 1 says that all non-
horizontal lines form an affine space A'.

Consider two horizontal planes Eo : z = 0 and E1 : z = 1. The inter-
section points go = (gl,g2,0) and gl = (g3,g4, 1) of a line G and planes Ei
(Figure 2) define a parametrization of all non-horizontal lines by

]1R4 = ]1p2 ×2 , £C, x R(5)
(g1,g2,g3,g4) - G.

Plicker coodinates of G are G = (g3 - g1,g4 - g 2 , 1;g2, -gt,gtg4 - g 2 9 3 ). The

stereographic projection with center Z onto x6 = 0 gives

G' = (g3 - gl, g4 - g2, 1; 92, -gl, 0).

This equals (5) up to a linear mapping. Hence, the mapping (5) from non-
horizontal lines to points in 1R4 is geometrically equivalent to a stereographic
projection of M 2 - T.

Distance function of lines

For practical purposes, it is sufficient to consider distances of lines within a
domain of interest. To specify this domain, we will consider only lines which
enclose an angle _< 0 with a fixed unit vector z. The unit direction vector g
of such a line G satisfies

g. z > cos 00.
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We have chosen a Cartesian coordinate system with z as third axis. Further,
we will consider only segments of lines between two planes E0 , El, bounding
the domain of interest. This is motivated by the fact that we are interested in
particular in distances between points lying between those planes. Let gi, hi
be intersection points of lines G, H with Ei, and consider points x, y on G
and H, respectively,

x(t) = (1 - t)go + tg(,

y(t) = (1 - t)ho + thl.

The square of a useful distance between lines G, H within the above domain
of interest is defined by

d(G, H) 2 
= Ilx(t) - y(t)II 2dt (7)

= (go - ho) 2 + (g, - hi) 2 + (go - ho)" (g, - hi).

It measures horizontal distances between corresponding points x, y of G, H.
We will not distinguish between a line X and its coordinate vector X =
(x1 , X2, X3, x4 ) in R4 according to parametrization (5). Formula (7) is a posi-
tive definite quadratic form in R 4 with the following coordinate representation

(X, X) X= + X2 X 3 +X2 + XlX3 + X2X4.

Remark 2. These distances differ from orthogonal distances (from a point to
a line G) only by a factor < cos 00. So, taking 00 relatively small will control
the difference between these distances and the Euclidean distances in E3 .

Summary 3. The restriction to specific subsets L0 of line space allows para-
metrizations R4 --+ Lo. A positive definite quadratic form in R4 serves to
define distances between lines in a useful manner.

Choice of local coordinates

Distance d is not invariant under motions in E3 , but depends on the choice
of z and planes Eo, E1 . Consider oriented lines Li,i = 1,...,N with unit
direction vectors li. Assume that lj • lk < C. This expresses that the angle
between any two lines is bounded by arccos(C). A good choice for the vector
z can be computed as solution of a regression problem. Assuming j1lll[ = 1,
we want to maximize

NY l z), (8)

over all unit vectors z. Maximizing the quadratic form (8) under the quadratic
side condition z • z = 1 leads to an eigenvalue problem in R 3 . Thus, we
found a possibility to construct z with respect to a set of lines Li. Planes
E0 , E1 perpendicular to z bounding the domain of interest have to be chosen
depending on the problem. In this sense we can say that the coordinate system
is connected with the problem in an invariant way.
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Fig. 3. Definition of domains.

If direction vectors li of lines Li are distributed over a whole hemisphere or
more, we have to split the set of lines into subsets and perform the construction
of coordinate systems for the subsets. Remark 2 gives information about the
deviation of distances compared to usual distances in El.

§3. Representation of Functions on L

Given N lines Li with corresponding function values fi, we would like to
compute a function F : £ --+ R with F(Li) = fi. This is a scattered data
interpolation problem on L (or M2). With help of local parametrizations we
obtain scattered data interpolation problems on R 4 . The given algorithm
consists of three steps.

1) Find a covering {Ujj = 1,...,M} of C with domains Uj which are
parametrized over R 4. Decide the membership of lines and domains.

2) Compute partial solutions Fj of the interpolation problem for all domains

U3.-
3) Merge all partial solutions Fj in a global solution F with required conti-

nuity.

First of all we want to find a covering of lines Li by domains Uj with 1 <
j < M. We choose M unit vectors zj and real numbers Rj which serve as
centers and spherical radii of caps of the unit sphere S 2 . These caps determine
domains Uj in the following way. A line L belongs to Uj if and only if

I zj > cos Rj

holds for its direction vector, see Figure 3. Clearly, L can be contained in more
than one domain. We determine the membership of all lines Li for domains
Uj.

In a second step we compute partial solutions Fj of the interpolation
problem for each domain Uj. This is done by letting

Nj

F,(X) = ajkBk(X),
k=1
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where Nj shall be the number of lines Li belonging to domain Uj. X =
(xi, x 2 , x3 , x4) E R4 is coordinate vector of a line X according to parametriza-
tion (5). Bk(X) are (for instance) radial basis functions and depend only on
the distance d(X, Lk). The coefficients ajk are solutions of linear systems. The
problem of regularity of such systems dependent on the type of basis function
is solved in [5]. So we get partial solutions Fj valid in domains Uj.

In the last step we have to merge all partial solutions to a unique one.
This can be done by forming a weighted sum

M

F(X) = wj(X)Fj(X).
j=1

The weights can be chosen as

(1 - arccos(x, mj)/Rj)r+wlj(X)= M 1
--Z=i1 (1 - arccos(x, ml)/R.)+

where mj and Rj are center and radius of the spherical cap which defines Uj
and x denotes the normalized direction vector of the line X. The notation
(q) r expresses that wj (X) is positive in the interior of Uj and is zero outside.
This says that (q) = qr for positive q, and (q)+ = 0 otherwise.

Weights wj(X) are in the differentiability class C-. If partial solutions
Fj possess the same smoothness, then also F is in C'- 1 .

§4. Visualization of Functions on Lines

Since the dimension of £ is four, visualization of function values is an advanced
topic. In general, displaying functions on low dimensional subsets seems to be
promising. We decided to choose several bundles of lines for evaluation and
want to describe two methods of visualization.

We choose an appropriate number of points vi within the domain of
interest, and evaluate F at sufficiently many lines passing through vertices
vi. Let Fma, be an (existing!) upper bound of the absolute function values.
Consider lines Lij with function values F(Lij) = fij passing through vertex
vi. Assume that Lij are oriented lines. Displaying the star-shaped surfaces

Pi = vi + (1 + fjA
Fmax

for all chosen vertices vi is one possibility to visualize function values. If
function values for L and -L are equal, the pi will be centrally symmetric
surfaces. For functions on nonoriented lines, we will use both direction vectors
lij and -lij for the definition of pi, and assign the same function value fij to
them. Thus we always get centrally symmetric surfaces. Figure 4 shows an
interpolant. The test function is a function of the distances between lines Li
and points (not displayed).

For the second method we use spheres Si, centered at vertices vi. All
lines Lij of the bundle vi with constant function values form a cone C with
vertex vi. Intersecting these cones C(ci) for several constants ci gives level
curves on spheres Si (not displayed).
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Fig. 4. Visualization of functions on lines.
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